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  𝑷(𝜷𝒓,𝒕 ≠ 𝟎) 

T→G 0.54 

C→T 0.00696 

G→C 0.0502 

T→C 0.221 

T→A 0.025 

C→A 6.06 x 10-8 

CpG→TpG 1.98 x 10-8 

 

Supplementary Table 2. Predictive power of local substitution rates. 

Predictive power of primate substitution rates for local de novo mutation rates using the 
Poisson regression model described in the Supplementary Note. Only S→W and W→W 
substitutions have significant predictive power for local de novo mutation rates. 
  



 𝜷!,𝒕 P(𝜷!,𝒕 ≠ 𝟎) 𝒇𝒕 

G→A -2.485 x10-5 0.23 1.034 

T→A 2.597 x 10-6 0.649 0.891 

C→A -9.857 x 10-5 < 2 x 10-16 1.014 

CpG→CpA/TpG -0.00449 < 2 x 10-16 0.988 

 
Supplementary Table 3. Dependency of local mutation rates on recombination rates 

Summarizes the estimated dependency of local mutation rates on recombination rates. 
Only C→A and CpG→TpG exhibit a significant dependency.  



Log Likelihood GoNL uniform Primate 𝒓𝒕,𝒊 Corrected 𝝁𝒕,𝒊(%/%)* 

Recomb. rates No No Male Sex-Averaged Female 

log LT>G -1,591.0 -1,605.3 -1,584.6 (0.4% / 1.3%) -1,584.6 (0.4% / 1.3%) -1,584.6 (0.4% / 1.3%) 

log LG>A -2,974.5 -2,961.7 -2,959.2 (0.5% / 0.1%) -2,959.2 (0.5% / 0.1%) -2,957.7 (0.6% / 0.1%) 

log LG>C -1,735.6 -1,736.5 -1,728.3 (0.4% / 0.5%) -1,728.4 (0.4% / 0.5%) -1,728.4 (0.4% / 0.5%) 

log LT>C -3,176.2 -3,183.5 -3,152.0 (0.8% / 1.0%) -3,152.0 (0.8% / 1.0%) -3,152.0 (0.8% / 1.0%) 

log LT>A -1,439.8 -1,437.7 -1,434.5 (0.4% / 0.2%) -1,434.5 (0.4% / 0.2%) -1,434.5 (0.4% / 0.2%) 

log LC>A -1,852.2 -1,836.7 -1,832.5 (1.1% / 0.2%) -1,831.9 (1.1% / 0.3%) -1,831.7 (1.1% / 0.3%) 

log LCpG>CpA/TpG -2,696.2 -2,439.6 -2,435.8 (9.7% / 0.2%) -2,435.0 (9.7% / 0.2%) -2,434.9 (9.7% / 0.2%) 

Total -15,465.6 -15,201.0 -15,126.9 (2.2% / 0.5%) -15,125.6 (2.2% / 0.5%) -15,123.8 (2.2% / 0.5%) 

* In parenthesis is the percent change of log likelihood of 𝝁𝒕,𝒊 compared to GoNL uniform model and uncorrected primate rate model 𝒓𝒕,𝒊. 

Supplementary Table 4. Likelihood of the observed data under different mutation 
rate models 
Likelihood of the observed de novo mutation data by substitution type based on (a) a 
uniform mutation rate model derived from the observed mutations, (b) the uncorrected 
primate rate matrix 𝒓𝒕,𝒊 and (c) the computed mutation rate matrix 𝝁𝒕,𝒊. 

  



Supplementary Note 
Mutation rate map 
For each 1Mb window i, a substitution rate matrix was inferred using the context-
dependent primate substitution model described in Duret et al. 3for seven types of 
substitutions, parameterized by 𝑟!,! with t in {T→G, G→C, T→C, T→A, C→A, C→T, 
CpG→TpG (to account for hyper-mutability of CpG sites)}.  
First, we tested if the observed de novo mutation rates co-vary with primate substitution 
rates across the genome using the following Poisson regression model with log link 
function:  

log 𝑛!,!  

= 𝛽!,!𝑟!,! + 𝛽!,!,! + log 𝑁!,!    for t ≠ CpG→TpG 

= 𝛽!,! 𝑟!,! + 𝑟!→!,! + 𝛽!,!,! + log 𝑁!,!   for t = CpG→TpG 

where 𝑛!,! is the observed count of de novo mutations of type t in window i, 𝑟!,! is the 
substitution rate of type t in window i, and 𝑁!,! is the number of sites at which de novo 
mutations of type t can be detected with high confidence in window i. The offset term 
log  (𝑁!,!) was added since the number of called de novo mutations is dependent on 
detection power. The C→T mutation of CpG sites requires special treatment since it can 
be attributed to context-independent C→T substitution as well as hyper-mutability of CpG.  
The primate substitution rates in the above Poisson regression model only had significant 
predictive power for local de novo mutation rates for S→W and W→W substitutions 
(Supplementary Table 2). For this reason, we only estimated local mutation rates based 
on the primate substitution rate for substitutions in tSW = {T→A, C→A, C→T, CpG→TpG}. 
For the rest of substitutions (t in {T→G, T→C, G→C}), we used the genome-wide 
averaged mutation rates 𝑟!! estimated from our observed mutations: 

𝑟!! =
𝑛!,!!

𝑁!,!!
⋅
1
𝑐   

𝑐   =
𝑛!,!!"!!"!

𝑟!,!𝑁!,!!"!!"! + 𝑟!→!,!𝑁!"#→!"#,!!
 

where c is a scaling factor to convert between de novo mutation rates and instantaneous 
substitution rates.  
Second, we corrected for the biases due to local recombination rates. The observed local 
de novo mutation rates were not significantly correlated with recombination rates when 
considering each type of substitutions separately (Bonferroni-corrected p-value > 0.05). 
However, local substitution rates 𝑟!,! depend significantly on local sex-averaged 
recombination rates 𝜌! for t = C→A and CpG→TpG (Supplementary Table 3). To eliminate 
the dependency on recombination rate, we fit the following linear regression model:  
𝑟!,! = 𝛽!,!  𝜌! + 𝛽!,!  

and residualized 𝑟!,! by subtracting the 𝜌!-dependent term. 

The final formula we used to compute the mutation rates for each 1Mb window i is then: 

𝜇!,! = 𝑟!,! − 𝛽!,!  𝜌! ⋅ 𝑓!  for t in {C→A, CpG→TpG} 



𝜇!,! = 𝑟!,! ⋅ 𝑓!      for t in {T→A, C→T} 

𝜇!,! =   𝑟!!    for t in {T→G, T→C, G→C} 

where 𝑓! is a global scaling factor for substitution of type t to match the observed 
frequencies of different types of de novo mutations (Supplementary Table 4). In particular, 
A→T mutation is over-represented in primate substitutions by 12% compared to our de 
novo data. For each t in tSW, 𝑓! is defined to satisfy the following conditions: 

𝜇!,!𝑁!,!! = !
!

𝑛!,!!    for t in {T→A, C→T, C→A} 

𝜇!,! + 𝜇!→!,! 𝑁!,!! = !
!

𝑛!,!!    for t = CpG→TpG 

Finally, the mutation rate µ was scaled so that the overall mutation rate across the 
autosome is 1.2 x 10-8 per nucleotide per generation. 
To evaluate the fit of the estimated mutation rates to observed de novo mutations, we 
examined the likelihood Lt of the observed data given mutation rates, assuming 
homogenous Poisson process for each type of mutation t within each window i:  

𝐿! 𝑑𝑎𝑡𝑎 𝜇!,!  

= 𝑃𝑜𝑖𝑠𝑠𝑜𝑛   𝑛!,! 𝜆 =
!
!!
𝜇!,!𝑁!,!!    for t ≠ CpG→TpG 

= 𝑃𝑜𝑖𝑠𝑠𝑜𝑛   𝑛!,! 𝜆 =
!
!!
   𝜇!,! + 𝜇!→!,! 𝑁!,!!   for t = CpG→TpG 

𝑐! =
𝑛!,!!!

𝜇!,!𝑁!,! + 𝜇!→!,!𝑁!"#→!"#,!!!!
 

The likelihood of the observed data under different models is summarized in 
Supplementary Table 4. 
 
We estimated functional mutation rates in protein-coding region for autosomal protein-
coding transcripts (downloaded from Ensembl 4 v74). Excluding 24,508 transcripts (3,808 
genes) outside our analysis windows for bias correction, we computed bias-corrected 
mutations rates for a total of 54,310 transcripts (15,462 genes).  For maximum coverage of 
genes, however, we provide two additional functional mutation rates based on uncorrected 
local primate substitution rates 𝑟!,! and the uniform genome-wide averaged mutation rates 
𝑟!! derived from our observed data. 
For each transcript, the local mutation rate was determined by the 1Mb genomic window 
that overlapped the coordinate of midpoint between transcription start and end sites. 
Based on this rate, all possible nonsense, missense, synonymous and 4-fold degenerate 
synonymous mutations were examined with respect to the reference genome, and their 
mutation rates were aggregated over the entire transcript.  
While we assumed the equal rate of 𝜇!→!,! and complementary 𝜇!→!,! in non-coding 
region, we adjusted for their strand bias in protein-coding region as follows: 

𝜇!→!,!!" =
𝑁!!" + 𝑁!!"

𝑁!!"
𝛾!"

1+ 𝛾!"
𝜇!→!,!!"  

𝜇!→!,!!" =
𝑁!!" + 𝑁!!"

𝑁!!"
1

1+ 𝛾!"  
𝜇!→!,!!"  



𝛾!" =
n!→!!"

n!→!!"  

where 𝜇!→!,!!"  (= 𝜇!→!,!!" ) is the local mutation rate of A:T→G:C in non-coding region, 𝜇!→!,!!"  
and 𝜇!→!,!!"  are the local mutation rates of T→C and A→G in protein-coding with respect to 
the transcribed strand, 𝑁!!" and 𝑁!!" are the total numbers of protein-coding A and T bases 
in transcribed strand across the autosomes, and n!→!!"  and n!→!!"  are the genome-wide 
counts of observed T→C and A→G de novo mutations with respect to the transcribed 
strand in our dataset. 𝛾!" was estimated to be 1.389 and  𝑁!!"/(𝑁!!" + 𝑁!!")  to be 0.543 in 
our data.  
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